Cell-Free Synthesis of Site-Specifically Double-Labeled Proteins for More Accurate Single-Molecule FRET Studies
نویسندگان
چکیده
منابع مشابه
Cell-free synthesis of 15N-labeled proteins for NMR studies.
Modern cell-free in vitro protein synthesis systems present powerful tools for the synthesis of isotope-labeled proteins in high yields. The production of selectively 15 N-labeled proteins from 15 N-labeled amino acids is particularly economic and yields are often sufficient to analyze the proteins very quickly by two-dimensional NMR spectra recorded of the crude reaction mixture without concen...
متن کاملLabeling proteins for single-molecule FRET.
Single-molecule (sm) fluorescence detection is a powerful method for studying biological events without time and population averaging. Förster (fluorescence) resonance energy transfer (FRET) is a spectroscopic technique for measuring distances in the 30-80 Å range in which excitation energy of a donor molecule is transferred to an acceptor via interaction between two induced dipoles. A variant ...
متن کاملCompletion of Proteomic Data Sets by Kd Measurement Using Cell-Free Synthesis of Site-Specifically Labeled Proteins
The characterization of phosphotyrosine mediated protein-protein interactions is vital for the interpretation of downstream pathways of transmembrane signaling processes. Currently however, there is a gap between the initial identification and characterization of cellular binding events by proteomic methods and the in vitro generation of quantitative binding information in the form of equilibri...
متن کاملSite-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification.
An often limiting factor for studying protein folding by single-molecule fluorescence resonance energy transfer (FRET) is the ability to site-specifically introduce a photostable organic FRET donor (D) and a complementary acceptor (A) into a polypeptide chain. Using alternating-laser excitation and chymotrypsin inhibitor 2 as a model, we show that chemical labeling of a unique cysteine, followe...
متن کاملSingle-molecule switchable FRET
Two-photon microscopy offers unique advantages for excitation of channelrhodopsin-2 (ChR2)-expressing neurons, but previous attempts had limitations in terms of the axial and temporal resolution. Emiliani and colleagues now use a scanless approach that combines generalized phase contrast and temporal focusing to shape two-photon excitation patterns and trigger single action potentials or trains...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2017
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.11.204